Oxford Flight Group - Taylor Lab

Oxford Flight Group Taylor Lab
Oxford Flight Group
Oxford Flight Group

About the Group

We are an internationally-leading biomechanics research team specialising in the dynamics, guidance, and control of flight. Our work combines fundamental research on animal flight with a strong and growing emphasis on applications to bio-inspired engineering.

We seek to understand the mechanisms underpinning the biological systems that we study with the same depth and rigour as an engineer developing a technical system. More ambitiously, we aim to use this insight to uncover the functional “design” principles that emerge evolutionarily through the interaction of natural selection and physical constraint.

Our applied goal is to identify new sensing algorithms, new control architectures, and new hardware solutions to guide the design of new technologies. More fundamentally we aim to understand – and ultimately predict – how these same organizational principles and algorithms emerge from the interaction of physics and physiology that characterizes all life.

We achieve this by combining the output of our state-of-the-art experimental facilities, ground-breaking imaging techniques, and technically challenging fieldwork with advanced mathematical theory in a diverse, inter-disciplinary research programme.

To discover more, visit https://flight.zoo.ox.ac.uk



Professor Graham Taylor (PI) 

Post-Docs: Dr Marco Klein Heerenbrink, Dr Indira Nagesh, Lydia France

DPhil: Leonidas-Romanos Davranoglou, James Shelton, James Kempton, Natalia Perez-Campanero, James Walker, Robin Mills                                          

Senior Research Associate: Dr Simon Walker 

Visiting Research Fellow: Dr Meng Xueguang

Recent Publications

Brighton, C.H., Thomas, A.L.R., Taylor, G.K. (2017). Terminal attack trajectories of peregrine falcons are described by the proportional navigation guidance law of missiles. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1714532114

Windsor, S.P. & Taylor, G.K. (2017) Head movements quadruple the range of speeds encoded by the insect motion vision system in hawkmoths. Proc. R. Soc. B 284, 20171622. https://doi.org/10.1098/rspb.2017.1622

Taylor, G.K., Reynolds, K.V., & Thomas, A.L.R. (2016) Soaring energetics and glide performance in a moving atmosphere. Phil. Trans. R. Soc. B 371, 20150398. doi:10.1098/rstb.2015.0398

Mokso, R., Schwyn, D.A., Walker, S.M, Doube, M., Wicklein, M., Müller, T., Stampanoni, M., Taylor, G.K., Krapp, H.G. (2015) Four-dimensional in vivo X-ray microscopy with projection-guided gating. Sci. Rep., 5, 8727. doi:10.1038/srep08727

Reynolds, K.V., Thomas, A.L.R., & Taylor, G.K. (2014) Wing tucks are a response to atmospheric turbulence in the soaring flight of the steppe eagle Aquila nipalensis. J. Roy. Soc. Interface 11, 101. doi:10.1098/rsif.2014.0645

Walker, S.M., Schwyn, D.A., Mokso, R., Wicklein, M., Müller, T., Doube, M., Stampanoni, M., Krapp, H.G., Taylor, G.K. (2014) In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor. PLoS Biology, 12(3), e1001823. doi:10.1371/journal.pbio.1001823

Windsor, S. P., Bomphrey, R.J., & Taylor, G.K. (2014). Vision-based flight control in the hawkmoth Hyles lineata. J. Roy Soc. Interface, 11(91), 20130921. doi:10.1098/rsif.2013.0921

Taylor, G.K. & Thomas, A.L.R. (2014). Evolutionary Biomechanics: Selection, Phylogeny, and Constraint. 176pp. Oxford University Press: Oxford. ISBN 978-0-19-856638-0.